LABORATORY DATA CONSULTANTS, INC.

2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

IWM Consulting Group 7428 Rockville Road Indianapolis, IN 46214 ATTN: Brad Gentry November 2, 2018

SUBJECT: Former Amphenol Facility, Data Validation

Dear Mr. Gentry,

Enclosed are the final validation reports for the fraction listed below. These SDGs were received on October 29, 2018. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #43514:

SDG # Fraction: 50208659, 50208787 Volatiles

The data validation was performed under Level III & IV guidelines. The analyses were validated using the following documents, as applicable to each method:

- Off-site Groundwater Investigation Work Plan, Franklin Power Products, Inc./Amphenol Corporation, Franklin, Indiana; October 2018
- USEPA National Functional Guidelines for Organic Superfund Methods Data Review;
 January 2017
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014

Please feel free to contact us if you have any questions.

Sincerely,

Pei Geng

Project Manager/Senior Chemist

	50 pages-EM	1 WEEK				/111.0									tachi		***********			, -									•								
LDC	90/10 SDG#	DATE REC'D	(3) DATE DUE	(! V(9) DA 50C)	(IV	/M	Co	nsı	ıltı:	ng —	Gr	oup		Ind	ian:	apc	lis	<u>, IN</u>	/ F	orr	nei	r Aı	npl	nen	IOI	Fac		y)								
Matrix	: Air/Water/Soil			W	S	W	S	W	s	W	s	W	s	W	s	W	s	w	s	W	s	W	s	w	s	w	s	w	s	W	s	w	s	W	s	W	s
А	50208659	10/29/18	11/05/18	7	0							Π		П																							П
Α	50208659	10/29/18	11/05/18	3	0							T		Т						Ī																	П
В	50208787		11/05/18	~~~~~~	·						Ī	T		T		T				Ī																	П
												T		T						T														Г			П
	***************************************			╅					<u> </u>	<u> </u>		T	1	十		T	†			T				 	<u> </u>	<u> </u>		<u> </u>					 	╅			П
				T				╅		 	T	T	T	T	1	T	<u> </u>		†	T		┢	†	T		<u> </u>	<u> </u>	†			<u> </u>	╅		T			П
				T							T	T	T	T	\top	T	1			T		\vdash													П		П
				T						T	T	T		T	1	T			T	╅		\vdash						T		I				T	\vdash		П
				╅			***************************************	_		-		T	†	T	_	1	 		-	T				╅	-							_					П
								\vdash			T	T		T	T					I^-						\vdash									\dagger		П
				-				-				T	1	T		T	-			-				_											\vdash		\Box
	***************************************					-				_	┢	十一		十一		T			<u> </u>	\vdash		<u> </u>						_		<u> </u>	_			 	\vdash		М
\vdash		 		\vdash				-		 	\vdash	T	 	+	+	\vdash	 			\vdash		\vdash		\vdash		 		 						\vdash	\vdash		М
	***************************************			╁				 	-	 	╁	╁	+	+	+	╫	+	-	╁	╫	├─	-	 	╫	-	 	<u> </u>	 	-			 		╫	\vdash		H
		1		 								╁	-	╫	-	╁				 			-											-	\vdash		\blacksquare
		_		\vdash				\vdash		-	┢	╁	-	+	+	\vdash	\vdash			\vdash		 	-	\vdash		-		<u> </u>		<u> </u>		\vdash	-	-	┼─┤	-	Н
\vdash				┢				-		 	╁	╁	╫	╫	+	╫	╫	-	┼	╁	 	 	╫	├	-	 		 		-	-	-		├	╁┯┦	_	Н
				╆━			************	-		ļ	┞	╁	-	╁	-	+-	-			╁			-	-				<u> </u>		<u> </u>		-		<u> </u>	╁		\vdash
┢──┼				╂				-		 	╫	╫	-	╫	+-	╫	├		├	┢		-	-	-		-	<u> </u>	<u> </u>		_	-	-		-	\vdash		Н
\vdash	***************************************	-		╫	-			├─	 	 	╂	╁	╂	╫	-	╫	┼─		╂	╁	├─	├──	╂	├─	 	├──		 		 		├─		├─	+		Н
		 		┼				-		-	┼─	╫	-	┿	+-	+-	-	-	╂	╂—	-	-	┼	├─	-	-	<u> </u>	 -		-		-		├	┼─┤		H
-		+		\vdash	-			 			┢	╁	╫	╫	+-	╫	-	<u> </u>	├─	┢	├─	 	┢	├	-	├─		├─	-	 		-		├─	╂─┤		Н
-				├						-	├	╀	-	╫	+	┼	-		├─	├	-	-	-	-		-		-						-	\vdash	-	Н
 			***************************************	 			***************************************				ļ	+	-	+-	-	-			ļ	 				-						<u> </u>					-		$\vdash \vdash \vdash$
 		-		-				-	-			\vdash	-	+	+-	-	-		 	├	-	 	-	-	-			-	_	<u> </u>	-	-	-	-	\vdash	<u> </u>	H
 - -				╂				<u> </u>	<u> </u>		 	╀	+	┼	-	┿	┿		 	<u> </u>	 		╁	├	 		<u> </u>					-	 	 	_		-
 		+		╄				-			╀	╀—	┿	┿	-	+	-	<u> </u>	 	╀		<u> </u>	-	-			<u> </u>			ļ		-		-	 		$\vdash \dashv$
 		-		├				 	<u> </u>	<u> </u>	├	┼	╂	┼	+	╂	├	<u> </u>	├	├—	-	<u> </u>	 			<u> </u>	<u> </u>		ļ	<u> </u>	<u> </u>	-	<u> </u>	<u> </u>	\vdash	<u> </u>	H
		-		ـــ				<u> </u>	<u> </u>	<u> </u>	 	╀	╀	╀	┿	╀	—	<u> </u>	—	₽	<u> </u>	<u> </u>	ـــ	├	<u> </u>	<u> </u>	<u> </u>	┡	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	ऻ—	 		\square
				_				<u> </u>		ļ		_	-	ـ		 	ļ			<u></u>		<u> </u>	ļ			<u> </u>		-		ļ		<u> </u>		ļ	 		
				<u> </u>				<u> </u>			<u> </u>		_	╀	-	_	ļ		<u> </u>	<u> </u>	ļ		-	<u> </u>				<u> </u>	<u></u>			<u> </u>		<u> </u>	\sqcup	—	Ш
Total	T/PG			23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	23

LDC Report# 43514A1

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Former Amphenol Facility

LDC Report Date:

November 1, 2018

Parameters:

Volatiles

Validation Level:

Level III & IV

Laboratory:

Pace Analytical Services, LLC.

Sample Delivery Group (SDG): 50208659

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
TW-2 GW (6.5'-11.5')	50208659001	Water	10/24/18
TW-3 GW (9.25'-11.25')	50208659002	Water	10/24/18
TW-12 GW (9.5'-11.5')**	50208659003**	Water	10/24/18
TW-10 GW (10.25'-12.25')**	50208659004**	Water	10/24/18
TW-8 GW (10.75'-12.75')	50208659005	Water	10/24/18
TW-8 GW (7.25'-9.25')	50208659006	Water	10/24/18
TW-9 GW (7.25'-9.25')**	50208659007**	Water	10/24/18
FD-1 GW	50208659008	Water	10/24/18
EB-1 GW	50208659009	Water	10/24/18
TB-1 GW	50208659010	Water	10/24/18
TW-10 GW (10.25'-12.25')DUP	50208659004DUP	Water	10/24/18
TW-8 GW (10.75'-12.75')MS	50208659005MS	Water	10/24/18

^{**}Indicates sample underwent Level IV validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Off-site Groundwater Investigation Work Plan, Franklin Power Products, Inc./Amphenol Corporation, Franklin, Indiana (Ocotber 2018) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260C

All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Level IV data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III, Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r²) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample TB-1 GW was identified as a trip blank. No contaminants were found.

Sample EB-1 GW was identified as an equipment blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates/Duplicate Sample Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples TW-2 GW (6.5'-11.5') and FD-1 GW were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

All compound quantitations met validation criteria for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation.

XIII. Target Compound Identifications

All target compound identifications met validation criteria for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation.

XIV. System Performance

The system performance was acceptable for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Former Amphenol Facility Volatiles - Data Qualification Summary - SDG 50208659

No Sample Data Qualified in this SDG

Former Amphenol Facility Volatiles - Laboratory Blank Data Qualification Summary - SDG 50208659

No Sample Data Qualified in this SDG

Former Amphenol Facility Volatiles - Field Blank Data Qualification Summary - SDG 50208659

No Sample Data Qualified in this SDG

ANALYTICAL RESULTS

Project:

Former Amphenol Facility

Pace Project No.:

Date: 10/26/2018 11:37 AM

50208659

Sample: TW-2 GW (9.5'-11.5')	Lab ID:	50208659001	Collecte	d: 10/24/18	3 17:18	Received: 10	0/25/18 07:50 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260/5030 MSV	Analytical	Method: EPA 8	260						
1,1-Dichloroethane	ND	ug/L	5.0	0.47	1		10/25/18 16:14	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.32	1		10/25/18 16:14	107-06-2	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.37	1		10/25/18 16:14	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.86	1		10/25/18 16:14	156-60-5	
Methylene Chloride	ND	ug/L	5.0	5.0	1		10/25/18 16:14	75-09-2	
Tetrachloroethene	ND	ug/L	5.0	0.61	1		10/25/18 16:14	127-18-4	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.89	1		10/25/18 16:14	71-55-6	
Trichloroethene	ND	ug/L	5.0	0.80	1		10/25/18 16:14	79-01-6	
Vinyl chloride	ND	ug/L	2.0	0.27	1		10/25/18 16:14	75-01-4	
Surrogates									
Dibromofluoromethane (S)	98	%.	89-116		1		10/25/18 16:14	1868-53-7	
4-Bromofluorobenzene (S)	101	%.	85-111		1		10/25/18 16:14	460-00-4	
Toluene-d8 (S)	97	%.	87-110		1		10/25/18 16:14	2037-26-5	

×1/01/8

ANALYTICAL RESULTS

Project:

Former Amphenol Facility

Pace Project No.:

Date: 10/26/2018 11:37 AM

50208659

Sample: TW-3 GW (9.25'-11.25')	Lab ID:	50208659002	Collected	: 10/24/18	16:25	Received: 10)/25/18 07:50 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260/5030 MSV	Analytical	Method: EPA 8	260						
1,1-Dichloroethane	ND	ug/L	5.0	0.47	1		10/25/18 16:49	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.32	1		10/25/18 16:49	107-06-2	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.37	1		10/25/18 16:49	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.86	1		10/25/18 16:49	156-60-5	
Methylene Chloride	ND	ug/L	5.0	5.0	1		10/25/18 16:49	75-09-2	
Tetrachloroethene	ND	ug/L	5.0	0.61	1		10/25/18 16:49	127-18-4	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.89	1		10/25/18 16:49	71-55-6	
Trichloroethene	ND	ug/L	5.0	0.80	1		10/25/18 16:49	79-01-6	
Vinyl chloride	ND	ug/L	2.0	0.27	1		10/25/18 16:49	75-01-4	
Surrogates									
Dibromofluoromethane (S)	99	%.	89-116		1		10/25/18 16:49	1868-53-7	
4-Bromofluorobenzene (S)	98	%.	85-111		1		10/25/18 16:49	460-00-4	
Toluene-d8 (S)	97	%.	87-110		1		10/25/18 16:49	2037-26-5	

ANALYTICAL RESULTS

Project:

Former Amphenol Facility

Pace Project No.: 50208659

Date: 10/26/2018 11:37 AM

Sample: TW-12 GW (9.5'-11.5')	Lab ID:	50208659003	Collecte	d: 10/24/18	3 15:26	Received: 10	0/25/18 07:50 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260/5030 MSV	Analytical	Method: EPA 8	260						
1,1-Dichloroethane	ND	ug/L	5.0	0.47	1		10/25/18 17:25	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.32	1		10/25/18 17:25	107-06-2	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.37	1		10/25/18 17:25	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.86	1		10/25/18 17:25	156-60-5	
Methylene Chloride	ND	ug/L	5.0	5.0	1		10/25/18 17:25	75-09-2	
Tetrachloroethene	23.6	ug/L	5.0	0.61	1		10/25/18 17:25	127-18-4	
1,1,1-Trichloroethane	3.0J	ug/L	5.0	0.89	1		10/25/18 17:25	71-55-6	
Trichloroethene	35.7	ug/L	5.0	0.80	1		10/25/18 17:25	79-01-6	
Vinyl chloride	ND	ug/L	2.0	0.27	1		10/25/18 17:25	75-01-4	
Surrogates		_							
Dibromofluoromethane (S)	99	%.	89-116		1		10/25/18 17:25	1868-53-7	
4-Bromofluorobenzene (S)	100	%.	85-111		1		10/25/18 17:25	460-00-4	
Toluene-d8 (S)	100	%.	87-110		1		10/25/18 17:25	2037-26-5	

8/10/18

ANALYTICAL RESULTS

Project:

Former Amphenol Facility

Pace Project No.:

Date: 10/26/2018 11:37 AM

50208659

Sample: TW-10 GW (10.25'-12.25')	Lab ID:	50208659004	Collecte	d: 10/24/18	3 14:25	Received: 10	0/25/18 07:50 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260/5030 MSV	Analytica	Method: EPA 8	260						
1,1-Dichloroethane	ND	ug/L	5.0	0.47	1		10/25/18 18:01	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.32	1		10/25/18 18:01	107-06-2	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.37	1		10/25/18 18:01	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.86	1		10/25/18 18:01	156-60-5	
Methylene Chloride	ND	ug/L	5.0	5.0	1		10/25/18 18:01	75-09-2	
Tetrachloroethene	32.5	ug/L	5.0	0.61	1		10/25/18 18:01	127-18-4	
1,1,1-Trichloroethane	11.0	ug/L	5.0	0.89	1		10/25/18 18:01	71-55-6	
Trichloroethene	82.2	ug/L	5.0	0.80	1		10/25/18 18:01	79-01-6	
Vinyl chloride	ND	ug/L	2.0	0.27	1		10/25/18 18:01	75-01-4	
Surrogates									
Dibromofluoromethane (S)	101	%.	89-116		1		10/25/18 18:01	1868-53-7	
4-Bromofluorobenzene (S)	96	%.	85-111		1		10/25/18 18:01	460-00-4	
Toluene-d8 (S)	95	%.	87-110		1		10/25/18 18:01	2037-26-5	

50/01/8

ANALYTICAL RESULTS

Project:

Former Amphenol Facility

Pace Project No.:

Date: 10/26/2018 11:37 AM

50208659

Sample: TW-8 GW (10.75'-12.75')	Lab ID:	50208659005	Collecte	d: 10/24/18	3 13:30	Received: 10)/25/18 07:50 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260/5030 MSV	Analytical	Method: EPA 8	260						
1,1-Dichloroethane	ND	ug/L	5.0	0.47	1		10/25/18 19:12	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.32	1		10/25/18 19:12	107-06-2	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.37	1		10/25/18 19:12	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.86	1		10/25/18 19:12	156-60-5	
Methylene Chloride	ND	ug/L	5.0	5.0	1		10/25/18 19:12	75-09-2	
Tetrachloroethene	ND	ug/L	5.0	0.61	1		10/25/18 19:12	127-18-4	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.89	1		10/25/18 19:12	71-55-6	
Trichloroethene	ND	ug/L	5.0	0.80	1		10/25/18 19:12	79-01-6	
Vinyl chloride	ND	ug/L	2.0	0.27	1		10/25/18 19:12	75-01-4	
Surrogates									
Dibromofluoromethane (S)	100	%.	89-116		1		10/25/18 19:12	1868-53-7	
4-Bromofluorobenzene (S)	100	%.	85-111		1		10/25/18 19:12	460-00-4	
Toluene-d8 (S)	98	%.	87-110		1		10/25/18 19:12	2037-26-5	

2/0/18

ANALYTICAL RESULTS

Project:

Former Amphenol Facility

Pace Project No.:

Date: 10/26/2018 11:37 AM

50208659

Sample: TW-8 GW (7.25'-9.25')	Lab ID:	50208659006	Collecte	d: 10/24/18	3 12:44	Received: 10	0/25/18 07:50 Ma	atrix: Water	
			Report						
Parameters	Results	Units -	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260/5030 MSV	Analytical	Method: EPA 8	260						
1,1-Dichloroethane	ND	ug/L	5.0	0.47	1		10/25/18 19:48	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.32	1		10/25/18 19:48	107-06-2	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.37	1		10/25/18 19:48	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.86	1		10/25/18 19:48	156-60-5	
Methylene Chloride	ND	ug/L	5.0	5.0	1		10/25/18 19:48	75-09-2	
Tetrachloroethene	ND	ug/L	5.0	0.61	1		10/25/18 19:48	127-18-4	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.89	1		10/25/18 19:48	71-55-6	
Trichloroethene	ND	ug/L	5.0	0.80	1		10/25/18 19:48	79-01-6	
Vinyl chloride	ND	ug/L	2.0	0.27	1		10/25/18 19:48	75-01-4	
Surrogates									
Dibromofluoromethane (S)	98	%.	89-116		1		10/25/18 19:48	1868-53-7	
4-Bromofluorobenzene (S)	97	%.	85-111		1		10/25/18 19:48	460-00-4	
Toluene-d8 (S)	96	%.	87-110		1		10/25/18 19:48	2037-26-5	

ANALYTICAL RESULTS

Project:

Former Amphenol Facility

Pace Project No.:

Date: 10/26/2018 11:37 AM

Sample: TW-9 GW (7.25'-9.25')	Lab ID:	50208659007	Collecte	d: 10/24/18	3 11:45	Received: 10)/25/18 07:50 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260/5030 MSV	Analytical	Method: EPA 8	260						
1,1-Dichloroethane	2.2J	ug/L	5.0	0.47	1		10/25/18 20:23	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.32	1		10/25/18 20:23	107-06-2	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.37	1		10/25/18 20:23	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.86	1		10/25/18 20:23	156-60-5	
Methylene Chloride	ND	ug/L	5.0	5.0	1		10/25/18 20:23	75-09-2	
Tetrachloroethene	ND	ug/L	5.0	0.61	1		10/25/18 20:23	127-18-4	
1,1,1-Trichloroethane	4.1J	ug/L	5.0	0.89	1		10/25/18 20:23	71-55-6	
Trichloroethene	21.4	ug/L	5.0	0.80	1		10/25/18 20:23	79-01-6	
Vinyl chloride	ND	ug/L	2.0	0.27	1		10/25/18 20:23	75-01-4	
Surrogates									
Dibromofluoromethane (S)	98	%.	89-116		1		10/25/18 20:23	1868-53-7	
4-Bromofluorobenzene (S)	99	%.	85-111		1		10/25/18 20:23	460-00-4	
Toluene-d8 (S)	96	%.	87-110		1		10/25/18 20:23	2037-26-5	

ANALYTICAL RESULTS

Project:

Former Amphenol Facility

Pace Project No.:

Date: 10/26/2018 11:37 AM

Sample: FD-1 GW	Lab ID:	50208659008	Collected:	10/24/18	3 08:00	Received: 10	/25/18 07:50 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260/5030 MSV	Analytical I	Method: EPA 8	260						
1,1-Dichloroethane	ND	ug/L	5.0	0.47	1		10/25/18 20:59	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.32	1		10/25/18 20:59	107-06-2	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.37	1		10/25/18 20:59	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.86	1		10/25/18 20:59	156-60-5	
Methylene Chloride	ND	ug/L	5.0	5.0	1		10/25/18 20:59	75-09-2	
Tetrachloroethene	ND	ug/L	5.0	0.61	1		10/25/18 20:59	127-18-4	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.89	1		10/25/18 20:59	71-55-6	
Trichloroethene	ND	ug/L	5.0	0.80	1		10/25/18 20:59	79-01-6	
Vinyl chloride	ND	ug/L	2.0	0.27	1		10/25/18 20:59	75-01-4	
Surrogates									
Dibromofluoromethane (S)	98	%.	89-116		1		10/25/18 20:59	1868-53-7	
4-Bromofluorobenzene (S)	98	%.	85-111		1		10/25/18 20:59	460-00-4	
Toluene-d8 (S)	97	%.	87-110		1		10/25/18 20:59	2037-26-5	

ANALYTICAL RESULTS

Project:

Former Amphenol Facility

Pace Project No.: 50208659

Date: 10/26/2018 11:37 AM

Sample: EB-1 GW	Lab ID: 5	50208659009	Collected:	10/24/18	17:45	Received: 10)/25/18 07:50 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260/5030 MSV	Analytical N	/lethod: EPA 8	260						
1,1-Dichloroethane	ND	ug/L	5.0	0.47	1		10/25/18 21:35	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.32	1		10/25/18 21:35	107-06-2	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.37	1		10/25/18 21:35	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.86	1		10/25/18 21:35	156-60-5	
Methylene Chloride	ND	ug/L	5.0	5.0	1		10/25/18 21:35	75-09-2	
Tetrachloroethene	ND	ug/L	5.0	0.61	1		10/25/18 21:35	127-18-4	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.89	1		10/25/18 21:35	71-55-6	
Trichloroethene	ND	ug/L	5.0	0.80	1		10/25/18 21:35	79-01-6	
Vinyl chloride	ND	ug/L	2.0	0.27	1		10/25/18 21:35	75-01-4	
Surrogates									
Dibromofluoromethane (S)	98	%.	89-116		1		10/25/18 21:35	1868-53-7	
4-Bromofluorobenzene (S)	98	%.	85-111		1		10/25/18 21:35	460-00-4	
Toluene-d8 (S)	96	%.	87-110		1		10/25/18 21:35	2037-26-5	

E 1/0/18

ANALYTICAL RESULTS

Project:

Former Amphenol Facility

Pace Project No.: 50208659

Date: 10/26/2018 11:37 AM

Sample: TB-1 GW	Lab ID:	50208659010	Collected	: 10/24/18	17:50	Received: 10)/25/18 07:50 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260/5030 MSV	Analytical	Method: EPA 8	260						
1,1-Dichloroethane	ND	ug/L	5.0	0.47	1		10/25/18 22:11	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.32	1		10/25/18 22:11	107-06-2	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.37	1		10/25/18 22:11	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.86	1		10/25/18 22:11	156-60-5	
Methylene Chloride	ND	ug/L	5.0	5.0	1		10/25/18 22:11	75-09-2	
Tetrachloroethene	ND	ug/L	5.0	0.61	1		10/25/18 22:11	127-18-4	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.89	1		10/25/18 22:11	71-55-6	
Trichloroethene	ND	ug/L	5.0	0.80	1		10/25/18 22:11	79-01-6	
Vinyl chloride	ND	ug/L	2.0	0.27	1		10/25/18 22:11	75-01-4	
Surrogates									
Dibromofluoromethane (S)	100	%.	89-116		1		10/25/18 22:11	1868-53-7	
4-Bromofluorobenzene (S)	101	%.	85-111		1		10/25/18 22:11	460-00-4	
Toluene-d8 (S)	98	%.	87-110		1		10/25/18 22:11	2037-26-5	

LDC #: 43514A1	VALIDATION COMPLETENESS WORKSHEET	Date: 11/01/18
SDG #: 50208659	Level III/IV	Page: 1 of a
Laboratory: Pace Analytic	al Energy Services, LLC	Page:of_a/ Reviewer: _
METHOD: GC/MS Volatil	es (EPA SW 846 Method 8260%)	2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	AIX	
11.	GC/MS Instrument performance check	A	
111.	Initial calibration/ICV	A'A	1CAL = 202 N 101 = 302
IV.	Continuing calibration	A	cov ≤ 20%
V.	Laboratory Blanks	Á	,
VI.	Field blanks	ND	EB = 9 TB = 10
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates / LD	A/A	
IX.	Laboratory control samples	A	LCS
X.	Field duplicates	ND	b = 1/8
XI.	Internal standards	Á	,
XII.	Compound quantitation RL/LOQ/LODs	A	Not reviewed for Level III validation.
XIII.	Target compound identification	A	Not reviewed for Level III validation.
XIV.	System performance	A	Not reviewed for Level III validation.
XV.	Overall assessment of data	'A	

A = Acceptable Note: N = Not provided/applicable SW = See worksheet R = Rinsate FB = Field blank

ND = No compounds detected

D = Duplicate TB = Trip blank EB = Equipment blank

SB=Source blank OTHER:

** Indicates sample underwent Level IV validation

	cates sample underwent Level IV validation	7		
	Client ID	Lab ID	Matrix	Date
1	TW-2 GW (6.5'-11.5')	50208659001	Water	10/24/18
2	TW-3 GW (9.25'-11.25')	50208659002	Water	10/24/18
3+	TW-12 GW (9.5'-11.5')**	50208659003**	Water	10/24/18
4	TW-10 GW (10.25'-12.25')**	50208659004**	Water	10/24/18
5	TW-8 GW (10.75'-12.75')	50208659005	Water	10/24/18
6	TW-8 GW (7.25'-9.25')	50208659006	Water	10/24/18
ት 7	TW-9 GW (7.25'-9.25')**	50208659007**	Water	10/24/18
8	FD-1 GW	50208659008	Water	10/24/18
9	EB-1 GW	50208659009	Water	10/24/18
10	TB-1 GW	50208659010	Water	10/24/18
11	TW-10 GW (10.25'-12.25')DUP	50208659004DUP	Water	10/24/18
12	TW-8 GW (10.75'-12.75')MS	50208659005MS	Water	10/24/18
13				

- MB 2161086

LDC	#:	43	5	1	4	P	1	
LDC	#:	-1-		ŧ	- 1	1	ļ	

VALIDATION FINDINGS CHECKLIST

	Page:	<u>_1_</u> of_2_
	Reviewer:	JVG
2nd	Reviewer:	A

Method: Volatiles (EPA SW 846 Method 8260C)

Validation Area	Yes	No	NA	Findings/Comments
I Technical holding times		and the		All the second s
Were all technical holding times met?		,		
Was cooler temperature criteria met?				
II. GC/MS Instrument performance check				
Were the BFB performance results reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 12 hour clock criteria?				
IIIa, Initial calibration		a e		100 (100 (100 (100 (100 (100 (100 (100
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) \leq 20% and relative response factors (RRF) within method criteria?		-		
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?				
IIIb, Initial Calibration Verification				A STATE OF THE STA
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) ≤ 30% or percent recoveries (%R) 70-130%?				
IV. Continuing calibration	1			
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?				
Were all percent differences (%D) ≤ 20% and relative response factors (RRF) within method criteria?				
V, Laboratory Blanks	1000			
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?				
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.		/		
VI, Field blanks				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Were field blanks were identified in this SDG?				
Were target compounds detected in the field blanks?			_	
VII. Surrogate spikes			196	
Were all surrogate percent recovery (%R) within QC limits?				
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?				
VIII. Matrix spike/Matrix spike duplicates	10			
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.	/			
Was a MS/MSD analyzed every 20 samples of each matrix?	/	<u> </u>		

LDC	#:	43	51	4	A	į

VALIDATION FINDINGS CHECKLIST

Page: 2_of_2 Reviewer: JVG 2nd Reviewer: ________

Validation Area	Yes	No	NA	Findings/Comments
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
IX: Laboratory control samples				Commence of the Commence of th
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per analytical batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates	Page			
Were field duplicate pairs identified in this SDG?				
Were target compounds detected in the field duplicates?		/		
XI Internal standards				
Were internal standard area counts within -50% to +100% of the associated calibration standard?				
Were retention times within ± 30 seconds of the associated calibration standard?				
XII. Compound quantitation				And the second s
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target compound identification				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?	/			
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	/			
Were chromatogram peaks verified and accounted for?				
XIV. System performance				
System performance was found to be acceptable.				
XV. Overall assessment of data		- 5		
Overall assessment of data was found to be acceptable.				

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene	A2.
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane	B2.
C. Vinyl choride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane	C2.
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene	D2.
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11	E2.
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12	F2.
G. Carbon disulfide	GG. Xylenes, total	GGG. p-Isopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113	G2.
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114	H2.
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane	12.
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide	J2.
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane	K2.
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane	L2.
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane	M2.
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane	N2.
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	OOOO.1,1-Diffuoroethane	O1, 3-Methylpentane	O2.
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane	P2.
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane	Q2.
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane	R2.
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane	S2.
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methylcyclohexane	T1. 2-Methylhexane	T2.
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Aliyi chloride	U1. Nonanal	U2.
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene	V2.
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol	W2.
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene	X2.
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY, tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1.	Y2.
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.	Z2.

LDC#: 43514A1

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_1_of_2_ Reviewer:__JVG_ 2nd Reviewer:___

Method: VOA (EPA SW846 Method 8260)

Calibration				(Y)	(X)
Date	Instrument	Compound	Standard	Response ratio	Concentration ratio
10/18/2018	50MV4B	Trichloroethene (DFB)	0.5	0.00119	0.010
			1	0.00573	0.020
			2	0.00947	0.040
			5	0.02350	0.100
			10	0.05036	0.200
			50	0.26269	1.000
			150	0.83486	3.000
			300	1.70730	6.000

Regression Output		Calculated	Reported
Constant	b =	-0.006644	-0.00664
R Squared	r2 =	0.99980	0.99980
X Coefficient(s)	m =	0.28431	0.28431
Correlation Coefficient		0.999902	
Coefficient of Determination (r^2)		0.999805	0.999805

LDC #: 43514A1

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: _2_ of _2_ Reviewer: ___JVG_ 2nd Reviewer: __A___

METHOD: GC/MS VOA (EPA SW 846 Method 8260C)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

 A_x = Area of Compound

A_{is} = Area of associated internal standard

average RRF = sum of the RRFs/number of standards

 C_x = Concentration of compound,

C_{is} = Concentration of internal standard

%RSD = 100 * (S/X)

S= Standard deviation of the RRFs.

X = Mean of the RRFs

					Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration			RRF	RRF	Average RRF	Average RRF	%RSD	%RSD
#	Standard ID	Date	Compound (IS)		(RRF 50 std)	(RRF 50 std)	(Initial)	(Initial)		
1	ICAL	10/18/2018	Trichloroethene (DF	FB)	see r2 calc					
	50MV4B		Tetrachloroethane (CE	BZ)	0.39357	0.39357	0.39457	0.39457	10.6849	10.6845

LDC # 43514A1

VALIDATION FINDINGS WORKSHEET Continuing Calibration Calculation Verification

Page: 1 of 1
Reviewer: JVG
2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260C)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

RRF = (Ax)(Cis)/(Ais)(Cx)

Where:

ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

Ax = Area of compound,

Cx = Concentration of compound,

Ais = Area of associated internal standard

Cis = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
		Calibration		Average RRF	RRF	RRF	% D	%D
#	Standard ID	Date	Compound (IS)	(Initial)	(CCV)	(CCV)		
1	14012384CCV	10/25/2018	Trichloroethene (DFB)	50.00000	48.09403	48.09403	3.81	3.81
			Tetrachloroethane (CBZ)	0.39457	0.42347	0.42347	7.32	7.32

43	514	A	
	43	43514	43514A

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:	_1_of_1_
Reviewer:	JVG
2nd reviewer:	1

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference	
Dibromofluoromethane	50.0	50.5	101	101	0	
1,2-Dichloroethane-d4						
Toluene-d8		47.7	95	95		
Bromofluorobenzene	J	47.8	96	96		

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4		***************************************			
Toluene-d8				**************************************	
Bromofluorobenzene					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8			***		
Bromofluorobenzene					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

	Page:	1	_of_	1	
	Reviewer:		JVC	3	
2nd	Reviewer:		R		
	-		-		~~

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added

SC = Sample concentration

RPD = I MSC - MSC I * 2/(MSC + MSDC)

MSC = Matrix spike concentration

MSDC = Matrix spike duplicate concentration

MS/MSD sample:

_	Ade	Spike Sample Spiked Sample <u>Matrix Spike</u> Added Concentration Concentration		Added Concentration Concentration		Added Concen		Concentration		Matrix Spik		Украности Помагоння поступавання под	/MSD
Compound	(20)	(L)	(4g/L)	145	12)	Percent	Recovery	Percent	Recovery	RPD			
	MS	MSD	News	MS	MSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated		
1,1-Dichloroethene	50.0	a.M	0	44.7	₩	89	89						
Trichloroethene	J	Ţ	J	41.9		४४	ક્ય						
Benzene		**************************************											
Toluene		-Management (Ways and a state of the particular											
Chlorobenzene		,											

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree
within 10.0% of the recalculated results.
,

LDC #: 4554 A1

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page: 1 of 1 Reviewer: JVG

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration

SA = Spike added

RPD = I LCSC - LCSDC | * 2/(LCSC + LCSDC)

LCS ID: 216 1087 LCS

Compound	Ad	Spike Spiked Sample LCS Added Concentration (VO L) (VO L) Percent Recovery				LCSD Percent Recovery		I CS/I CSD		
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
a 1,1-Dichloroethene	50.0	M	46.2	VA-	92	92				
Trichloroethene		J	45,6		91	G1	·			
Benzene			***************************************			·····		;		
Toluene										
Chlorobenzene										

Comments:	Refer to Laboratory	Control Sample find	<u>lings worksheet for</u>	<u>r list of qualifica</u>	<u>tions and as</u>	sociated san	<u>nples when re</u> r	<u>oorted results</u>	<u>do not aq</u>	<u>ree within 1</u>	<u>0.0%</u>
of the recalci	ulated results.										
,						-					
		·····							***************************************		

LDC #: 43574 1

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page: 1 of 1
Reviewer: JVG
2nd reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Y N N/A Y N N/A Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concentration = $(A_s)(I_s)(DF)$ (A_s)(RRF)(V_o)(%S) Area of the characteristic ion (EICP) for the A, compound to be measured Area of the characteristic ion (EICP) for the specific internal standard Amount of internal standard added in nanograms **RRF** Relative response factor of the calibration standard. = Volume or weight of sample pruged in milliliters (ml) or grams (g). Df Dilution factor. %S Percent solids, applicable to soils and solid matrices only.

Example: Sample I.D. 4 , 5 ...

Conc. 74140) -(-0.0066438) , (50) = 82. $2u_{1}$

#	Sample ID	Compound	Reported Concentration (Vg /L)	Calculated Concentration ()	Qualification
			35.7 82.2	•	
				· · · · · · · · · · · · · · · · · · ·	

				•••••••••••••••••••••••••••••••••••••••	
					Manager of the state of the sta

LDC Report# 43514B1

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Former Amphenol Facility

LDC Report Date:

November 1, 2018

Parameters:

Volatiles

Validation Level:

Level III

Laboratory:

Pace Analytical Services, LLC.

Sample Delivery Group (SDG): 50208787

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
TW-13 GW(11.25'-13.25')	50208787001	Water	10/25/18
TW-11 GW(8.75'-10.75')	50208787002	Water	10/25/18
TW-4 GW(15.25'-17.25')	50208787003	Water	10/25/18
TW-4 GW(19'-21')	50208787004	Water	10/25/18
TW-14 GW(18.25'-20.25')	50208787005	Water	10/25/18
TW-14 GW(14.75'-16.75')	50208787006	Water	10/25/18
TW-7 GW(14.5'-16.5')	50208787007	Water	10/25/18
TW-7 GW(18.66'-20.66')	50208787008	Water	10/25/18
MW-9	50208787009	Water	10/25/18
TW-5 GW(14.75'-16.75')	50208787010	Water	10/25/18
TW-6 GW(12.75'-14.75')	50208787011	Water	10/25/18
FD-2 GW	50208787012	Water	10/25/18
TB-2 GW	50208787013	Water	10/25/18
MW-9MS	50208787009MS	Water	10/25/18
MW-9MSD	50208787009MSD	Water	10/25/18

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Off-site Groundwater Investigation Work Plan, Franklin Power Products, Inc./Amphenol Corporation, Franklin, Indiana (Ocotber 2018) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260C

All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r²) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
10/29/18	Vinyl chloride	24.4153	FD-2 GW TB-2 GW	UJ (all non-detects)	, A

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample TB-2 GW was identified as a trip blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples TW-6 GW(12.75'-14.75') and FD-2 GW were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentr		
Compound	TW-6 GW(12.75'-14.75')	FD-2 GW	RPD
cis-1,2-Dichloroethene	5.0U	0.56	Not calculable
Tetrachloroethene	2.4	2.5	4
Trichloroethene	2.3	2.1	9

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Level III validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Level III validation.

XIV. System Performance

Raw data were not reviewed for Level III validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to continuing calibration %D, data were qualified as estimated in two samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

Former Amphenol Facility Volatiles - Data Qualification Summary - SDG 50208787

			·	
Sample	Compound	Flag	AorP	Reason
FD-2 GW TB-2 GW	Vinyl chloride	UJ (all non-detects)	Α	Continuing calibration (%D)

Former Amphenol Facility Volatiles - Laboratory Blank Data Qualification Summary - SDG 50208787

No Sample Data Qualified in this SDG

Former Amphenol Facility
Volatiles - Field Blank Data Qualification Summary - SDG 50208787

No Sample Data Qualified in this SDG

ANALYTICAL RESULTS

Project:

Former Amphenol Facility

Pace Project No.:

Date: 10/29/2018 12:30 PM

50208787

Sample: TW-13 GW (11.25'-13.25')	Lab ID:	50208787001	Collecte	d: 10/25/18	3 10:30	Received: 10)/26/18 09:20 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260/5030 MSV	Analytical	Method: EPA 8	260						
1,1-Dichloroethane	2.7J	ug/L	5.0	0.47	1		10/28/18 15:40	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.27	1		10/28/18 15:40	107-06-2	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		10/28/18 15:40	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.76	1		10/28/18 15:40	156-60-5	
Methylene Chloride	ND	ug/L	5.0	5.0	1		10/28/18 15:40	75-09-2	
Tetrachloroethene	58.6	ug/L	5.0	0.93	1		10/28/18 15:40	127-18-4	
1,1,1-Trichloroethane	21.1	ug/L	5.0	0.49	1		10/28/18 15:40	71-55-6	
Trichloroethene	117	ug/L	5.0	0.64	1		10/28/18 15:40	79-01-6	
Vinyl chloride	ND	ug/L	2.0	0.97	1		10/28/18 15:40	75-01-4	
Surrogates									
Dibromofluoromethane (S)	101	%.	89-116		1		10/28/18 15:40	1868-53-7	
4-Bromofluorobenzene (S)	101	%.	85-111		1		10/28/18 15:40	460-00-4	
Toluene-d8 (S)	98	%.	87-110		1		10/28/18 15:40	2037-26-5	

N /10/18

ANALYTICAL RESULTS

Project:

Former Amphenol Facility

Pace Project No.: 50208787

Date: 10/29/2018 12:30 PM

Sample: TW-11 GW (8.75'-10.75')	Lab ID:	50208787002	Collecte	d: 10/25/18	3 11:05	Received: 10	0/26/18 09:20 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260/5030 MSV	Analytica	Method: EPA 8	260						
1,1-Dichloroethane	ND	ug/L	5.0	0.47	1		10/28/18 16:16	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.27	1		10/28/18 16:16	107-06-2	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		10/28/18 16:16	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.76	1		10/28/18 16:16	156-60-5	
Methylene Chloride	ND	ug/L	5.0	5.0	1		10/28/18 16:16	75-09-2	
Tetrachloroethene	52.7	ug/L	5.0	0.93	1		10/28/18 16:16	127-18-4	
1,1,1-Trichloroethane	8.0	ug/L	5.0	0.49	1		10/28/18 16:16	71-55-6	
Trichloroethene	76.6	ug/L	5.0	0.64	1		10/28/18 16:16	79-01-6	
Vinyl chloride	ND	ug/L	2.0	0.97	1		10/28/18 16:16	75-01-4	
Surrogates									
Dibromofluoromethane (S)	95	%.	89-116		1		10/28/18 16:16	1868-53-7	
4-Bromofluorobenzene (S)	103	%.	85-111		1		10/28/18 16:16	460-00-4	
Toluene-d8 (S)	97	%.	87-110		1		10/28/18 16:16	2037-26-5	

ANALYTICAL RESULTS

Project:

Former Amphenol Facility

Pace Project No.:

Date: 10/29/2018 12:30 PM

50208787

Sample: TW-4 GW (15.25'-17.25')	Lab ID:	50208787003	Collecte	d: 10/25/18	3 11:50	Received: 10)/26/18 09:20 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260/5030 MSV	Analytical	Method: EPA 8	260						
1,1-Dichloroethane	ND	ug/L	5.0	0.47	1		10/28/18 16:52	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.27	1		10/28/18 16:52	107-06-2	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		10/28/18 16:52	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.76	1		10/28/18 16:52	156-60-5	
Methylene Chloride	ND	ug/L	5.0	5.0	1		10/28/18 16:52	75-09-2	
Tetrachloroethene	ND	ug/L	5.0	0.93	1		10/28/18 16:52	127-18-4	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.49	1		10/28/18 16:52	71-55-6	
Trichloroethene	1.8J	ug/L	5.0	0.64	1		10/28/18 16:52	79-01-6	
Vinyl chloride	ND	ug/L	2.0	0.97	1		10/28/18 16:52	75-01-4	
Surrogates									
Dibromofluoromethane (S)	99	%.	89-116		1		10/28/18 16:52	1868-53-7	
4-Bromofluorobenzene (S)	87	%.	85-111		1		10/28/18 16:52	460-00-4	
Toluene-d8 (S)	89	%.	87-110		1		10/28/18 16:52	2037-26-5	

ANALYTICAL RESULTS

Project:

Former Amphenol Facility

Pace Project No.: 50208787

Date: 10/29/2018 12:30 PM

Sample: TW-4 GW (19'-21')	Lab ID:	50208787004	Collecte	d: 10/25/18	3 12:22	Received: 10	0/26/18 09:20 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260/5030 MSV	Analytical	Method: EPA 8	260						
1,1-Dichloroethane	ND	ug/L	5.0	0.47	1		10/28/18 17:27	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.27	1		10/28/18 17:27	107-06-2	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		10/28/18 17:27	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.76	1		10/28/18 17:27	156-60-5	
Methylene Chloride	ND	ug/L	5.0	5.0	1		10/28/18 17:27	75-09-2	
Tetrachloroethene	ND	ug/L	5.0	0.93	1		10/28/18 17:27	127-18-4	
1,1,1-Trichloroethane	0.62J	ug/L	5.0	0.49	1		10/28/18 17:27	71-55-6	
Trichloroethene	5.9	ug/L	5.0	0.64	1		10/28/18 17:27	79-01-6	
Vinyl chloride	, ND	ug/L	2.0	0.97	1		10/28/18 17:27	75-01-4	
Surrogates Dibromofluoromethane (S)	102	%.	89-116		1		10/28/18 17:27	1868-53-7	
4-Bromofluorobenzene (S)	100	%.	85-111		1		10/28/18 17:27	460-00-4	
Toluene-d8 (S)	97	%.	87-110		1		10/28/18 17:27	2037-26-5	

2 10118

ANALYTICAL RESULTS

Project:

Former Amphenol Facility

Pace Project No.:

Date: 10/29/2018 12:30 PM

50208787

Sample: TW-14 GW (18.25'-20.25')	Lab ID:	50208787005	Collecte	d: 10/25/18	3 12:58	Received: 10)/26/18 09:20 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260/5030 MSV	Analytical	Method: EPA 8	260						
1,1-Dichloroethane	ND	ug/L	5.0	0.47	1		10/28/18 18:03	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.27	1		10/28/18 18:03	107-06-2	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		10/28/18 18:03	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.76	1		10/28/18 18:03	156-60-5	
Methylene Chloride	ND	ug/L	5.0	5.0	1		10/28/18 18:03	75-09-2	
Tetrachloroethene	4.4J	ug/L	5.0	0.93	1		10/28/18 18:03	127-18-4	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.49	1		10/28/18 18:03	71-55-6	
Trichloroethene	1.5J	ug/L	5.0	0.64	1		10/28/18 18:03	79-01-6	
Vinyl chloride	ND	ug/L	2.0	0.97	1		10/28/18 18:03	75-01-4	
Surrogates									
Dibromofluoromethane (S)	101	%.	89-116		1		10/28/18 18:03	1868-53-7	
4-Bromofluorobenzene (S)	102	%.	85-111		1		10/28/18 18:03	460-00-4	
Toluene-d8 (S)	95	%.	87-110		1		10/28/18 18:03	2037-26-5	

ANALYTICAL RESULTS

Project:

Former Amphenol Facility

Pace Project No.: 50208787

Date: 10/29/2018 12:30 PM

Sample: TW-14 GW (14.75'-16.75')	Lab ID:	50208787006	Collecte	d: 10/25/18	3 13:40	Received: 10)/26/18 09:20 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260/5030 MSV	Analytical	Method: EPA 8	260						
1,1-Dichloroethane	ND	ug/L	5.0	0.47	1		10/28/18 18:39	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.27	1		10/28/18 18:39	107-06-2	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		10/28/18 18:39	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.76	1		10/28/18 18:39	156-60-5	
Methylene Chloride	ND	ug/L	5.0	5.0	1		10/28/18 18:39	75-09-2	
Tetrachloroethene	1.8J	ug/L	5.0	0.93	1		10/28/18 18:39	127-18-4	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.49	1		10/28/18 18:39	71-55-6	
Trichloroethene	ND	ug/L	5.0	0.64	1		10/28/18 18:39	79-01-6	
Vinyl chloride	ND	ug/L	2.0	0.97	1		10/28/18 18:39	75-01-4	
Surrogates		_							
Dibromofluoromethane (S)	99	%.	89-116		1		10/28/18 18:39	1868-53-7	
4-Bromofluorobenzene (S)	99	%.	85-111		1		10/28/18 18:39	460-00-4	
Toluene-d8 (S)	97	%.	87-110		1		10/28/18 18:39	2037-26-5	

2 11018

ANALYTICAL RESULTS

Project:

Former Amphenol Facility

Pace Project No.:

Date: 10/29/2018 12:30 PM

50208787

Sample: TW-7 GW (14.5'-16.5')	Lab ID:	50208787007	Collected	: 10/25/18	14:33	Received: 10	0/26/18 09:20 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260/5030 MSV	Analytical	Method: EPA 8	260						
1,1-Dichloroethane	ND	ug/L	5.0	0.47	1		10/28/18 19:15	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.27	1		10/28/18 19:15	107-06-2	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		10/28/18 19:15	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.76	1		10/28/18 19:15	156-60-5	
Methylene Chloride	ND	ug/L	5.0	5.0	1		10/28/18 19:15	75-09-2	
Tetrachloroethene	ND	ug/L	5.0	0.93	1		10/28/18 19:15	127-18-4	
1,1,1-Trichloroethane	0.74J	ug/L	5.0	0.49	1		10/28/18 19:15	71-55-6	
Trichloroethene	2.4J	ug/L	5.0	0.64	1		10/28/18 19:15	79-01-6	
Vinyl chloride	ND	ug/L	2.0	0.97	1		10/28/18 19:15	75-01-4	
Surrogates									
Dibromofluoromethane (S)	100	%.	89-116		1		10/28/18 19:15	1868-53-7	
4-Bromofluorobenzene (S)	101	%.	85~111		1		10/28/18 19:15	460-00-4	
Toluene-d8 (S)	97	%.	87-110		1		10/28/18 19:15	2037-26-5	

ANALYTICAL RESULTS

Project:

Former Amphenol Facility

Pace Project No.: 50208787

Date: 10/29/2018 12:30 PM

Sample: TW-7 GW (18.66'-20.66')	Lab ID:	50208787008	Collected	: 10/25/18	3 15:05	Received: 10	/26/18 09:20 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260/5030 MSV	Analytical	Method: EPA 8	260						
1,1-Dichloroethane	ND	ug/L	5.0	0.47	1		10/28/18 19:50	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.27	1		10/28/18 19:50	107-06-2	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		10/28/18 19:50	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.76	1		10/28/18 19:50	156-60-5	
Methylene Chloride	ND	ug/L	5.0	5.0	1		10/28/18 19:50	75-09-2	
Tetrachloroethene	ND	ug/L	5.0	0.93	. 1		10/28/18 19:50	127-18-4	
1,1,1-Trichloroethane	1.4J	ug/L	5.0	0.49	1		10/28/18 19:50	71-55-6	
Trichloroethene	4.5J	ug/L	5.0	0.64	1		10/28/18 19:50	79-01-6	
Vinyl chloride	, ND	ug/L	2.0	0.97	1		10/28/18 19:50	75-01-4	
Surrogates									
Dibromofluoromethane (S)	98	%.	89-116		1		10/28/18 19:50	1868-53-7	
4-Bromofluorobenzene (S)	98	%.	85-111		1		10/28/18 19:50	460-00-4	
Toluene-d8 (S)	96	%.	87-110		1		10/28/18 19:50	2037-26-5	

& 1d18

ANALYTICAL RESULTS

Project:

Former Amphenol Facility

Pace Project No.: 50208787

Date: 10/29/2018 12:30 PM

Sample: MW-9	Lab ID:	50208787009	Collecte	d: 10/25/18	3 16:30	Received: 10	0/26/18 09:20 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260/5030 MSV	Analytical	Method: EPA 8	260						
1,1-Dichloroethane	ND	ug/L	5.0	0.47	1		10/28/18 20:26	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.27	1		10/28/18 20:26	107-06-2	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		10/28/18 20:26	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.76	1		10/28/18 20:26	156-60-5	
Methylene Chloride	ND	ug/L	5.0	5.0	1		10/28/18 20:26	75-09-2	
Tetrachloroethene	ND	ug/L	5.0	0.93	1		10/28/18 20:26	127-18-4	
1,1,1-Trichloroethane	2.2J	ug/L	5.0	0.49	1		10/28/18 20:26	71-55-6	
Trichloroethene	1.7J	ug/L	5.0	0.64	1		10/28/18 20:26	79-01-6	
Vinyl chloride	ND	ug/L	2.0	0.97	1		10/28/18 20:26	75-01-4	
Surrogates									
Dibromofluoromethane (S)	102	%.	89-116		1		10/28/18 20:26	1868-53-7	
4-Bromofluorobenzene (S)	105	%.	85-111		1		10/28/18 20:26	460-00-4	
Toluene-d8 (S)	96	%.	87-110		1		10/28/18 20:26	2037-26-5	

n POIR

ANALYTICAL RESULTS

Project:

Former Amphenol Facility

Pace Project No.: 50208787

Date: 10/29/2018 12:30 PM

Sample: TW-5 GW (14.75'-16.75')	Lab ID:	50208787010	Collected	10/25/18	3 17:07	Received: 10	/26/18 09:20 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260/5030 MSV	Analytical	Method: EPA 8	260						
1,1-Dichloroethane	ND	ug/L	5.0	0.47	1		10/28/18 21:02	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.27	1		10/28/18 21:02	107-06-2	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		10/28/18 21:02	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.76	1		10/28/18 21:02	156-60-5	
Methylene Chloride	ND	ug/L	5.0	5.0	1		10/28/18 21:02	75-09-2	
Tetrachloroethene	2.7J	ug/L	5.0	0.93	1		10/28/18 21:02	127-18-4	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.49	1		10/28/18 21:02	71-55-6	
Trichloroethene	1.9J	ug/L	5.0	0.64	1		10/28/18 21:02	79-01-6	
Vinyl chloride	ND	ug/L	2.0	0.97	1		10/28/18 21:02	75-01-4	
Surrogates									
Dibromofluoromethane (S)	103	%.	89-116		1		10/28/18 21:02	1868-53-7	
4-Bromofluorobenzene (S)	100	%.	85-111		1		10/28/18 21:02	460-00-4	
Toluene-d8 (S)	96	%.	87-110		1		10/28/18 21:02	2037-26-5	

2 1/0/18

ANALYTICAL RESULTS

Project:

Former Amphenol Facility

Pace Project No.:

Date: 10/29/2018 12:30 PM

50208787

Sample: TW-6 GW (12.75'-14.75')	Lab ID:	50208787011	Collected	10/25/18	3 17:38	Received: 10	/26/18 09:20 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260/5030 MSV	Analytical	Method: EPA 8	260						
1,1-Dichloroethane	ND	ug/L	5.0	0.47	1		10/28/18 21:38	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.27	1		10/28/18 21:38	107-06-2	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		10/28/18 21:38	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.76	1		10/28/18 21:38	156-60-5	
Methylene Chloride	ND	ug/L	5.0	5.0	1		10/28/18 21:38	75-09-2	
Tetrachloroethene	2.4J	ug/L	5.0	0.93	1		10/28/18 21:38	127-18-4	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.49	1		10/28/18 21:38	71-55-6	
Trichloroethene	2.3J	ug/L	5.0	0.64	1		10/28/18 21:38	79-01-6	
Vinyl chloride	ND	ug/L	2.0	0.97	1		10/28/18 21:38	75-01-4	
Surrogates									
Dibromofluoromethane (S)	99	%.	89-116		1		10/28/18 21:38	1868-53-7	
4-Bromofluorobenzene (S)	99	%.	85-111		1		10/28/18 21:38	460-00-4	
Toluene-d8 (S)	97	%.	87-110		1		10/28/18 21:38	2037-26-5	

ANALYTICAL RESULTS

Project:

Former Amphenol Facility

Pace Project No.:

Date: 10/29/2018 12:30 PM

50208787

Sample: FD-2 GW	Lab ID:	50208787012	Collected:	10/25/18	3 08:00	Received: 10	0/26/18 09:20 M	atrix: Water	***************************************
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							~~~~~	
8260/5030 MSV	Analytical	Method: EPA 8	260						
1,1-Dichloroethane	ND	ug/L	5.0	0.47	1		10/29/18 05:23	75-34-3	M5
1,2-Dichloroethane	ND	ug/L	5.0	0.27	1		10/29/18 05:23	107-06-2	M5
cis-1,2-Dichloroethene	0.56J	ug/L	5.0	0.48	1		10/29/18 05:23	156-59-2	M5
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.76	1		10/29/18 05:23	156-60-5	M5
Methylene Chloride	ND	ug/L	5.0	5.0	1		10/29/18 05:23	75-09-2	M5
Tetrachloroethene	2.5J	ug/L	5.0	0.93	1		10/29/18 05:23	127-18-4	M5
1,1,1-Trichloroethane	ND	ug/L	5.0	0.49	1		10/29/18 05:23	71-55-6	M5
Trichloroethene	2.1J	ug/L	5.0	0.64	1		10/29/18 05:23	79-01-6	M5
Vinyl chloride	ND L	 Jug/L	2.0	0.97	1		10/29/18 05:23	75-01-4	M5
Surrogates									
Dibromofluoromethane (S)	100	%.	89-116		1		10/29/18 05:23	1868-53-7	M5
4-Bromofluorobenzene (S)	100	%.	85-111		1		10/29/18 05:23	460-00-4	M5
Toluene-d8 (S)	97	%.	87-110		1		10/29/18 05:23	2037-26-5	M5

ANALYTICAL RESULTS

Project:

Former Amphenol Facility

Pace Project No.: 50208787

Date: 10/29/2018 12:30 PM

Sample: TB-2 GW	Lab ID:	50208787013	Collected:	10/25/18	00:80	Received: 1	0/26/18 09:20 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260/5030 MSV	Analytical	Method: EPA 8	260						
1,1-Dichloroethane	ND	ug/L	5.0	0.47	1		10/29/18 05:59	75-34-3	M5
1,2-Dichloroethane	ND	ug/L	5.0	0.27	1		10/29/18 05:59	107-06-2	M5
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		10/29/18 05:59	156-59-2	M5
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.76	1		10/29/18 05:59	156-60-5	M5
Methylene Chloride	ND	ug/L	5.0	5.0	1		10/29/18 05:59	75-09-2	M5
Tetrachloroethene	ND	ug/L	5.0	0.93	1		10/29/18 05:59	127-18-4	M5
1,1,1-Trichloroethane	ND	ug/L	5.0	0.49	1		10/29/18 05:59	71-55-6	M5
Trichloroethene	ND	ug/L	5.0	0.64	1		10/29/18 05:59	79-01-6	M5
Vinyl chloride	NDU	T ug/L	2.0	0.97	1*		10/29/18 05:59	75-01-4	M5
Surrogates	,	•							
Dibromofluoromethane (S)	100	%.	89-116		1		10/29/18 05:59	1868-53-7	M5
4-Bromofluorobenzene (S)	101	%.	85-111		1		10/29/18 05:59	460-00-4	M5
Toluene-d8 (S)	98	%.	87-110		1		10/29/18 05:59	2037-26-5	M5

LDC #: 43514B1	VALIDATION COMPLETENESS WORKSHEET	Date: 11 61 /18
SDG #: 50208787	Level III	Page: 1_of_2
Laboratory: Pace Analytical Er	nergy Services, LLC	Reviewer: < <u>\V</u>
METHOD: GC/MS Volatiles (E	EPA SW 846 Method 8260)>)	2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	AIA	
11,	GC/MS Instrument performance check	A.	
111.	Initial calibration/ICV	AIA	1CAL = 20./020 2 10 = 30%
IV.	Continuing calibration	'SW'	CN & 20%
V.	Laboratory Blanks	<u> </u>	
VI.	Field blanks	ND	TB = 13
VII.	Surrogate spikes	Á	
VIII.	Matrix spike/Matrix spike duplicates	A	
IX.	Laboratory control samples	A	us
X.	Field duplicates	SW	D = 11/12
XI.	Internal standards	A	
XII./	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	Á	

Note:	A = Acceptable
	N = Not provided/applicable
	SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	TW-13 GW(11.25'-13.25')	50208787001	Water	10/25/18
2	TW-11 GW(8.75'-10.75')	50208787002	Water	10/25/18
3	TW-4 GW(15.25'-17.25')	50208787003	Water	10/25/18
1	TW-4 GW(19'-21')	50208787004	Water	10/25/18
5	TW-14 GW(18.25'-20.25')	50208787005	Water	10/25/18
3	TW-14 GW(14.75'-16.75')	50208787006	Water	10/25/18
7	TW-7 GW(14.5'-16.5')	50208787007	Water	10/25/18
3	TW-7 GW(18.66'-20.66')	50208787008	Water	10/25/18
}	MW-9	50208787009	Water	10/25/18
10	TW-5 GW(14.75'-16.75')	50208787010	Water	10/25/18
11	TW-6 GW(12.75'-14.75')	50208787011	Water	10/25/18
2	FD-2 GW	50208787012	Water	10/25/18
13	TB-2 GW	50208787013	Water	10/25/18

LDC #: 43514B1 VALIDATION COMPLETENESS WORKSHEET SDG #: 50208787 Level III Laboratory: Pace Analytical Energy Services, LLC METHOD: GC/MS Volatiles (EPA SW 846 Method 8260)							2ne	Date: <u>॥ /61 /18</u> Page: <u>∼ of </u> 2 Reviewer: <u>5</u> 4 d Reviewer: <u>1</u> 4	
	Client ID				***************************************		Lab ID	Matrix	Date
14	MW-9MS						50208787009MS	Water	10/25/18
15	MW-9MSD						50208787009MSD	Water	10/25/18
16		···········							
17									
18					*****				
19		*************							
20_									
Note			y						
-1	MB 2163274 MB 2163282								
-2	MB 2163282								
	(Short list = 9 cpds only)								

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene	A2.
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane	B2.
C. Vinyl choride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane	C2.
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene	D2.
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11	E2.
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12	F2.
G. Carbon disulfide	GG. Xylenes, total	GGG. p-Isopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113	G2.
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114	H2.
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane	12.
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide	J2.
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane	K2.
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane	L2.
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane	M2.
N. 1,1,1-Trìchloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane	N2.
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	OOOO.1,1-Difluoroethane	O1. 3-Methylpentane	O2.
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane	P2.
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane	Q2.
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane	R2.
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane	S2.
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methylcyclohexane	T1. 2-Methylhexane	T2.
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal	U2.
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene	V2.
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol	W2.
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene	X2.
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1.	Y2.
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.	Z2.

LDC#: 43514B1

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page:_	<u>\</u> of_	1
Reviewer:_	JVG	,
2nd Reviewer:	4	
	\	

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y/N N/A

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? N N/A

Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's?

Y(N)N/A Were all %D and RRFs within the validation criteria of ≤20 %D and ≥0.05 RRF?

#	Date	Standard ID	Compound	Finding %D (Limit: <20.0%)	Finding RRF (Limit: ≥0.05)	Associated Samples	Qualifications
	10/29/18	Standard ID 14022009 CCV	<u>ر</u>	24.4153		12, 13, MB2 (ND	
	1						7 7 7 7
		WB					
	***************************************		***************************************				
				······································	•		
<u> </u>							
ļ							

ļ			······································				
ļ	***************************************						
			·····				

LDC #: 43514B1

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page: 1 of 1

Reviewer: JVG 2nd reviewer:_

METHOD: GC/MS VOA (EPA SW846 Method 8260)

N N/A

Were field duplicate pairs identified in this SDG?
Were target compounds identified in the field duplicate pairs?

	Concentra	tion (ug/L)	222
Compound	11	12	RPD
QQQ	5.0U	0.56	NC
AA	2.4	2.5	4
S	2.3	2.1	9

V:\Josephine\FIELD DUPLICATES\43514B1 ivm amphenol.wpd